Mechanizm sprzężenia zwrotnego zabezpiecza rośliny przed uszkodzeniem przez światło. Zespół z Imperial College London odkrył, że kluczowy dla fotosyntezy fotoukład II (PSII) dostosowuje swoją aktywność, by uniknąć uszkodzenia przez światło i tlen.
Zobacz cały artykuł na tej stronie
Kilka słów z Wikipedii o fotoukładzie II
Fotoukład II – pierwszy kompleks białek w reakcji fotochemicznej fotosyntezy tlenowej. Zlokalizowany jest w tylakoidach roślin, glonów i sinic. W czasie fotosyntezy, enzymy zbierają fotony światła by wzbudzić elektrony, które są następnie przesyłane przez rozmaite koenzymy i kofaktory by zredukować plastochinon do plastochinolu. Wzbudzone elektrony w efekcie rozkładu wody wymieniane są na jony wodorowe i tlen cząsteczkowy.
Przez zastąpienie elektronów, tymi jakie pochodzą z fotodysocjacji wody, fotoukład II otrzymuje elektrony potrzebne do wszystkich fotosyntez. Jony wodorowe (protony) powstałe przez utlenianie wody pomagają przy powstaniu gradientu protonowego potrzebnego podczas syntezy ATP której produktem jest ATP. Wzbudzone elektrony przesłane do plastochinonu ostatecznie użyte są do redukcji NADP+ do NADPH lub biorą udział w cyklicznej fosforylacji fotosyntetycznej[1].
Kilka słów z Wikipedii o roślinach
Rośliny (Archaeplastida Adl i in. 2005, dawne nazwy naukowe: Vegetabilia, Plantae, Phytobionta, Plastida, Primoplantae) – eukariotyczne i autotroficzne organizmy, wykorzystujące energię promieniowania słonecznego za sprawą barwników asymilacyjnych (zdarzają się wśród roślin także organizmy heterotroficzne – pasożytnicze, w tym też myko-heterotroficzne, ale mają one charakter wtórny).
Rośliny zbudowane są z komórek, tworzących u roślin wyżej uorganizowanych tkanki i organy. Umożliwiają one im oddychanie, odżywianie, wzrost i rozwój. Proces fotosyntezy prowadzą dzięki chloroplastom zawierającym chlorofil i pochodzącym z endosymbiozy sinic. Produktem zapasowym jest skrobia. Mają sztywną, zwykle celulozową ścianę komórkową. Rośliny cechują się także zdolnością do nieprzerwanego wzrostu za sprawą tkanek twórczych mających stałą zdolność do podziału komórek. Zazwyczaj są trwale przytwierdzone do podłoża.
Ewolucja spowodowała ogromne zróżnicowanie form ich budowy oraz przystosowanie do różnorodnych warunków środowiskowych panujących na Ziemi.
Kilka słów z Wikipedii o świetle
Światło – pojęcie to ma inne znaczenie potoczne i w nauce.
Potocznie nazywa się tak widzialną część promieniowania elektromagnetycznego, czyli promieniowanie widzialne odbierane przez siatkówkę oka ludzkiego np. w określeniu światłocień. Precyzyjne ustalenie zakresu długości fal elektromagnetycznych nie jest tutaj możliwe, gdyż wzrok każdego człowieka charakteryzuje się nieco inną wrażliwością, stąd za wartości graniczne przyjmuje się maksymalnie 380-780 nm, choć często podaje się mniejsze zakresy (szczególnie od strony fal najdłuższych) aż do zakresu 400-700 nm.
W naukach ścisłych używa się określenia promieniowanie optyczne, tj. promieniowania podlegającego prawom optyki geometrycznej oraz falowej. Przyjmuje się, że promieniowanie optyczne obejmuje zakres fal elektromagnetycznych o długości od 100 nm do 1 mm, podzielony na trzy zakresy – podczerwień, światło widzialne oraz ultrafiolet. Wszystkie te zakresy można obserwować i mierzyć korzystając z podobnego zestawu przyrządów, a wyniki tych badań można opracowywać korzystając z tych samych praw fizyki[1].
źródło: pl.wikipedia.org